

Intel[®] NUC Board NUC6i5SYB and Intel[®] NUC Board NUC6i3SYB Technical Product Specification

October 2016 Order Number: H92311-006

Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current characterized errata, if any, are documented in Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB Specification Update.

Revision History

Revision	Revision History	Date
001	First release of the Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB Technical Product Specification	October 2015
002	Specification Clarification	March 2016
003	Specification Clarification	March 2016
004	Specification Change	May 2016
005	Specification Change	August 2016
006	Specification Change	October 2016

Disclaimer

This product specification applies to only the standard Intel NUC Board with BIOS identifier SYSKLi35.86A.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL[®] PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

All Intel NUC Boards are evaluated as Information Technology Equipment (I.T.E.) for use in personal computers (PC) for installation in homes, offices, schools, computer rooms, and similar locations. The suitability of this product for other PC or embedded non-PC applications or other environments, such as medical, industrial, alarm systems, test equipment, etc. may not be supported without further evaluation by Intel.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families: Go to: Learn About Intel[®] Processor Numbers

Intel NUC may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Intel, the Intel logo, Intel NUC, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, 2016 Intel Corporation. All rights reserved.

Board Identification Information

Basic Intel® NUC Board NUC6i5SYB Identification Information

AA Revision	BIOS Revision	Notes	
H81131-502	SYSKLi35.86A	1,2	

Notes:

- 1. The AA number is found on a small label on the component side of the board.
- 2. The Intel® Core™ i5-6260U processor is used on this AA revision consisting of the following component:

Device	Stepping	S-Spec Numbers
Intel Core i5	К1	SR2JC

Basic Intel® NUC Board NUC6i3SYB Identification Information

AA Revision	BIOS Revision	Notes	
H81132-502	SYSKLi35.86A	1,2	

Notes:

1. The AA number is found on a small label on the component side of the board.

2. The Intel® Core™ i3-6100U processor is used on this AA revision consisting of the following component:

Device	Stepping S-Spec Numbers	
Intel Core i3	D1	SR2EU502

Specification Changes or Clarifications

The table below indicates the Specification Changes or Specification Clarifications that apply to the Intel NUC Board NUC6i5SYB and NUC6i3SYB.

Date	Type of Change	Description of Changes or Clarifications
March 2016	Spec Clarification	Corrected applicable art in the manual to show the 12-19 V DC input jack on the SoC side of the board.
March 2016	Spec Clarification	 Added Note to Section 2.2.4.4 to clarify what the Auxiliary Power Connector is used for. Corrected System memory from 16 GB to 32 GB.
May 2016	Spec Change	Front panel header added.Deleted the Near Field Communication (NFC) header and all related text.
August 2016	Spec Change	Page 23 Table 7 from 192 kHz / 24 bit to 192 kHz 16 bit
October 2016	Spec change	Added info about supported 8 to 128 GB SD Card sizes in SDXC Card Reader section

Specification Changes or Clarifications

Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB Technical Product Specification

Errata

Current characterized errata, if any, are documented in a separate Specification Update. See <u>http://www.intel.com/content/www/us/en/nuc/overview.html</u> for the latest documentation.

v

Preface

This Technical Product Specification (TPS) specifies the board layout, components, connectors, power and environmental requirements, and the BIOS for Intel® NUC Board NUC6i5SYB and Intel® NUC Board NUC6i3SYB.

Intended Audience

The TPS is intended to provide detailed, technical information about Intel® NUC Board NUC6i5SYB and Intel® NUC Board NUC6i3SYB and its components to the vendors, system integrators, and other engineers and technicians who need this level of information. It is specifically not intended for general audiences.

What This Document Contains

Chapter	Description
1	A description of the hardware used on Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB
2	A map of the resources of the Intel NUC Board
3	The features supported by the BIOS Setup program
4	A description of the BIOS error messages, beep codes, and POST codes
5	Regulatory compliance and battery disposal information

Typographical Conventions

This section contains information about the conventions used in this specification. Not all of these symbols and abbreviations appear in all specifications of this type.

Notes, Cautions, and Warnings

Notes call attention to important information.

Cautions are included to help you avoid damaging hardware or losing data.

#	Used after a signal name to identify an active-low signal (such as USBPO#)
GB	Gigabyte (1,073,741,824 bytes)
GB/s	Gigabytes per second
Gb/s	Gigabits per second
КВ	Kilobyte (1024 bytes)
Kb	Kilobit (1024 bits)
kb/s	1000 bits per second
MB	Megabyte (1,048,576 bytes)
MB/s	Megabytes per second
Mb	Megabit (1,048,576 bits)
Mb/s	Megabits per second
TDP	Thermal Design Power
Xxh	An address or data value ending with a lowercase h indicates a hexadecimal value.
x.x V	Volts. Voltages are DC unless otherwise specified.
*	This symbol is used to indicate third-party brands and names that are the property of their respective owners.

Other Common Notation

Contents

Revision History

Disclaimer	ii
Board Identification Information	. iii
Errata	. iv

Preface

Intended Audience	vi
What This Document Contains	vi
Typographical Conventions	vi

1 Product Description

1.1	Overvie	W	13
	1.1.1	Feature Summary	13
	1.1.2	Board Layout (Top)	15
	1.1.3	Board Layout (Bottom)	17
	1.1.4	Block Diagram	19
1.2	Online S	Support	20
1.3	Process	or	20
1.4	System	Memory	21
	1.4.1	Memory Configurations	22
1.5	Process	or Graphics Subsystem	23
	1.5.1	Integrated Graphics	23
1.6	USB		26
1.7	SATA In	iterface	26
	1.7.1	AHCI Mode	27
	1.7.2	Intel® Rapid Storage Technology / SATA RAID	27
	1.7.3	Intel® Smart Response Technology	27
1.8	Real-Tir	ne Clock Subsystem	28
1.9	Audio S	ubsystem	28
	1.9.1	Audio Subsystem Software	29
1.10	LAN Sul	bsystem	29
	1.10.1	Intel® I219V Gigabit Ethernet Controller	29
	1.10.2	LAN Subsystem Software	29
	1.10.3	RJ-45 LAN Connector with Integrated LEDs	31
	1.10.4	Wireless Network Module	32
1.11	Hardwa	re Management Subsystem	32
	1.11.1	Hardware Monitoring	32
	1.11.2	Fan Monitoring	32
	1.11.3	Thermal Solution	33

	1.12	Power l	Management	
		1.12.1	ACPI	
		1.12.2	Hardware Support	
2	Tec	hnical I	Reference	
	2.1	Memor	y Resources	
		2.1.1	Addressable Memory	
	2.2	Connec	tors and Headers	41
		2.2.1	Front Panel Connectors	
		2.2.2	Back Panel Connectors	
		2.2.3	Headers and Connectors (Top)	
		2.2.4	Connectors and Headers (Bottom)	
	2.3	BIOS Se	ecurity Jumper	53
	2.4	Mechar	nical Considerations	55
		2.4.1	Form Factor	55
	2.5	Electric	al Considerations	
		2.5.1	Power Supply Considerations	
		2.5.2	Fan Header Current Capability	
	2.6	Therma	al Considerations	57
	2.7	Reliabil	ity	62
	2.8	Enviror	imental	62
3	Ove	rview o	of BIOS Features	
	3.1	Introdu	ction	63
	3.2	BIOS Fl	ash Memory Organization	64
	3.3	System	Management BIOS (SMBIOS)	64
	3.4	Legacy	USB Support	64
	3.5	BIOS U	pdates	65
		3.5.1	Language Support	65
		3.5.2	Custom Splash Screen	
	3.6	BIOS Re	ecovery	
	3.7	Boot O	ptions	67
		3.7.1	Network Boot	67
		3.7.2	Booting Without Attached Devices	67
		3.7.3	Changing the Default Boot Device During POST	67
		3.7.4	Power Button Menu	
	3.8	Hard Di	isk Drive Password Security Feature	69
	3.9		ecurity Features	
4	Erro	or Mess	ages and Blink Codes	
	1 1	Front n	anel Power LED Blink Codes	71
	4.1	- Γιοπι-μ		

Figures

1.	Major Board Components (Top)	15
2.	Major Board Components (Bottom)	17
3.	Block Diagram	19
4.	Memory Channel and SO-DIMM Configuration	22
5.	4-Pin 3.5 mm (1/8 inch) Audio Jack Pin Out	28
6.	LAN Connector LED Locations	31
7.	Thermal Solution and Fan Header	33
8.	Location of the Standby Power LED	38
9.	Front Panel Connectors	42
10.	Back Panel Connectors	
11.	Headers and Connectors (Top)	
12.	Connectors and Headers (Bottom)	44
13.	Connection Diagram for Front Panel Header (2.0 mm Pitch)	48
14.	Connection Diagram for the Internal USB 2.0 Single-Port Header (1.25 mm Pitch)	52
15.	Location of the CIR Sensor	. 52
16.	Location of the BIOS Security Jumper	53
17.	Board Dimensions	. 55
18.	Board Height Dimensions	
19.	Localized High Temperature Zones	. 58
20.	Installation Area of Thermal Pad for Intel NUC Kit NUC6i5SYK/NUC6i3SYK	59
21.	Installation area of Thermal Pad for Intel NUC Kit NUC6i5SYH/NUC6i3SYH	60

Tables

1.	Feature Summary	13
2.	Components Shown in Figure 1	16
3.	Components Shown in Figure 2	
4.	Supported DDR4/-RS Non-ECC SO-DIMM Module Configurations	21
5.	DisplayPort Multi-Streaming Resolutions	24
6.	Multiple Display Configuration Maximum Resolutions	25
7.	Audio Formats Supported by the HDMI and Mini DisplayPort Interfaces	25
8.	LAN Connector LED States	
9.	Effects of Pressing the Power Switch	
10.	Power States and Targeted System Power	
11.	Wake-up Devices and Events	
12.	Headers and Connectors Shown in Figure 11	
13.	Connectors and Headers Shown in Figure 12	
14.	SATA Power Connector (1.25 mm pitch)	
15.	Single-Port Internal USB 2.0 Header (1.25 mm pitch)	
16.	M.2 2280 Module (key type M) Connector	
17.	CEC Header (1.25 mm pitch)	47

18.	Front Panel Header (2.0 mm Pitch)	48
19.	States for a One-Color Power LED	49
20.	States for a Dual-Color Power LED	49
21.	SDXC Card Reader Connector	50
22.	Auxiliary Power Connector	51
23.	Fan Header Current Capability	56
24.	Thermal Considerations for Components	61
25.	Tcontrol Values for Components	61
26.	Environmental Specifications	62
27.	Acceptable Drives/Media Types for BIOS Recovery	66
28.	Boot Device Menu Options	67
29.	Master Key and User Hard Drive Password Functions	69
30.	Supervisor and User Password Functions	70
31.	Front-panel Power LED Blink Codes	71

1.1 Overview

1.1.1 Feature Summary

Table 1 summarizes the major features of Intel[®] NUC Board NUC6i5SYB and Intel[®] NUC Board NUC6i3SYB.

Form Factor	4.0 inches by 4.0 inches (101.60 millimeters by 101.60 millimeters)
Processor	 A soldered-down 6th generation Intel[®] Core[™] i5-6260U dual-core processor with up to a maximum 15 W TDP (if thermal margin available)
	— Intel® Iris™ Graphics 540
	 Integrated memory controller
	 Integrated PCH
	 A soldered-down 6th generation Intel[®] Core[™] i3-6100U dual-core processor with up to a maximum 15 W TDP (if thermal margin available)
	 Intel[®] HD Graphics 520
	 Integrated memory controller
	 Integrated PCH
Memory	Two 260-pin 1.2 V DDR4 SDRAM Small Outline Dual Inline Memory Module (SO-DIMM) sockets
	Support for DDR4 2133 MHz SO-DIMMs
	Support for 2 Gb and 4 Gb memory technology
	Support for up to 32 GB of system memory with two SO-DIMMs using 4 Gb memory
	technology
	Support for non-ECC memory
	Support for 1.2 V low voltage JEDEC memory only
Graphics	 Integrated graphics support for processors with Intel[®] Graphics Technology:
	 One High Definition Multimedia Interface* (HDMI*) back panel connector
	 One Mini DisplayPort* back panel connector
Audio	Intel [®] High Definition (Intel [®] HD) Audio via the HDMI v1.4b and Mini DisplayPort 1.2
	interfaces through the processor
	Realtek HD Audio via a stereo microphone/headphone 3.5 mm jack on the front panel
Storage	SATA ports:
	 One SATA 6.0 Gb/s port (black) for 2.5" storage device
	One SATA 6.0 Gb/s port is reserved for an M.2 storage module supporting M.2 2242 and
	M.2 2280 (key type M) modules
	Note: Supports key type M (PCI Express* x1/x2/x4 and SATA)

Table 1. Feature Summary

continued

Peripheral Interfaces	USB 3.0 ports:		
	 Two ports are implemented with external front panel connectors (one blue and one orange charging capable) Two ports are implemented with external back panel connectors (blue) USB 2.0 ports: 		
	 Two ports via two single-port internal 1x4 1.25 mm pitch headers (white) One port is reserved for the M.2 2230 Wireless module Consumer Infrared (CIR) 		
Expansion Capabilities	One M.2 connector supporting M.2 2242 and M.2 2280 (key type M) modules		
BIOS	Intel [®] BIOS resident in the Serial Peripheral Interface (SPI) Flash device		
	 Support for Advanced Configuration and Power Interface (ACPI), Plug and Play, and System Management BIOS (SMBIOS) 		
Instantly Available PC	Suspend to RAM support		
Technology	Wake on PCI Express, LAN, front panel, CIR, and USB ports		
LAN	Gigabit (10/100/1000 Mb/s) LAN subsystem using the Intel® I219V Gigabit Ethernet Controller		
Hardware Monitor Subsystem	Hardware monitoring subsystem, based on a ITE Tech. IT8607E-DXS embedded controller, including:		
	Voltage sense to detect out of range power supply voltages		
	Thermal sense to detect out of range thermal values		
	One processor fan header		
	Fan sense input used to monitor fan activity		
	Fan speed control		
Wireless	Intel® Dual Band Wireless-AC 8260		
	• 802.11ac, Dual Band, 2x2 Wi-Fi + Bluetooth 4.0		
	Maximum Transfer speed up to 867Mbps		
	Supports Intel [®] Wireless Display (WiDi)		
	Supports Intel [®] Smart Connect Technology		

Table 1. Feature Summary (continued)

1.1.2 Board Layout (Top)

Figure 1 shows the location of the major components on the top-side of Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB.

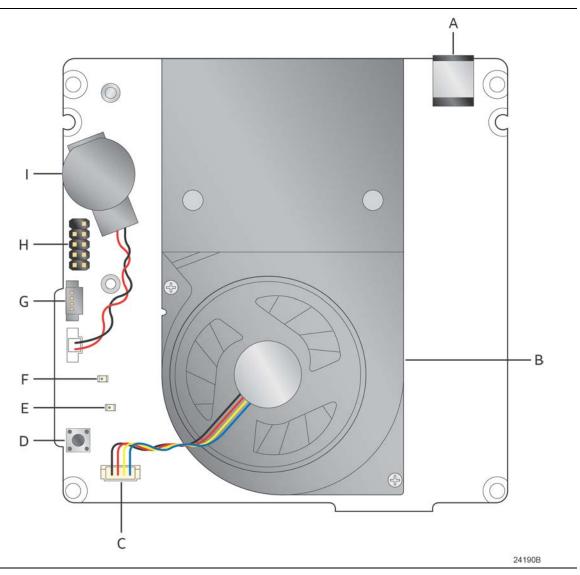
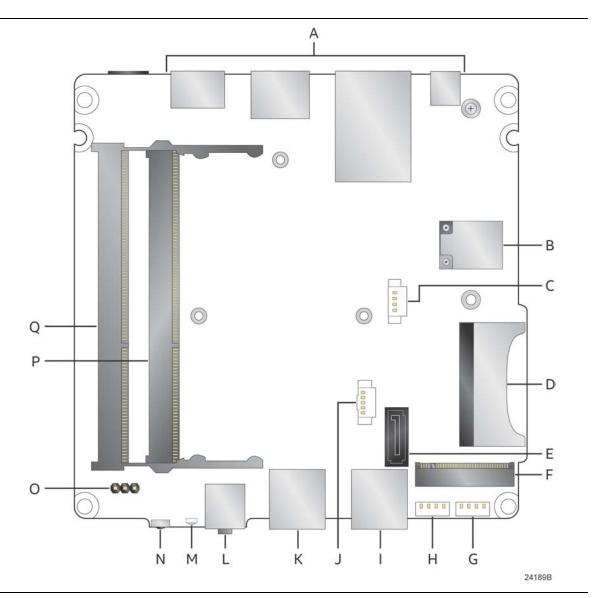


Figure 1. Major Board Components (Top)


Table 2 lists the components identified in Figure 1.


Item from Figure 1	Description	
А	12-19 V DC input jack	
В	Thermal solution	
С	Processor fan header	
D	Onboard power button	
E	Standby Power LED	
F	Hard Disk Drive LED	
G	CEC header	
Н	Front panel header	
I	Battery	

Table 2. Components Shown in Figure 1

1.1.3 Board Layout (Bottom)

Figure 2 shows the location of the major components on the bottom-side of Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB.

Item from Figure 2	Description	
A	Back panel connectors	
В	Intel Dual Band Wireless AC + Bluetooth 8260 module	
С	Auxiliary power connector	
D	SDXC slot	
E	SATA 6.0 Gb/s connector	
F	M.2 connector (key type M) for 2242 and 2280 modules	
G	Front panel single-port USB 2.0 header (1.25 mm pitch)	
Н	Front panel single-port USB 2.0 header (1.25 mm pitch)	
	Front panel USB 3.0 connector (blue)	
J	SATA power connector (1.25 mm pitch)	
К	Front panel USB 3.0 connector (orange, charging)	
L	Front panel stereo microphone/headphone jack	
М	Front panel Power LED	
Ν	Consumer Infrared (CIR) sensor	
0	BIOS security jumper	
Р	DDR4 SO-DIMM 1 socket	
Q	DDR4 SO-DIMM 2 socket	

Table 3. Components Shown in Figure 2

1.1.4 Block Diagram

Figure 3 is a block diagram of the major functional areas of the board.

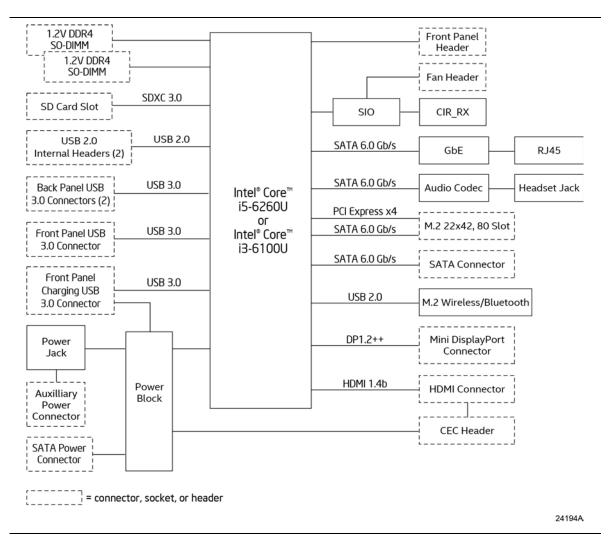


Figure 3. Block Diagram

1.2 Online Support

To find information about...

Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB Intel NUC Board Support

Available configurations for Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB

BIOS and driver updates Tested memory Integration information Processor datasheet

Visit this World Wide Web site:

http://www.intel.com/NUC

http://www.intel.com/NUCSupport http://ark.intel.com

http://downloadcenter.intel.com http://www.intel.com/NUCSupport http://www.intel.com/NUCSupport http://ark.intel.com

1.3 Processor

A soldered-down 6th generation Intel[®] Core[™] i5-6260U dual-core processor with up to a maximum 15 W TDP (if thermal margin is available).

- Intel[®] Iris[™] Graphics 540
- Integrated memory controller
- Integrated PCH

A soldered-down 6th generation Intel[®] Core[™] i3-6100U dual-core processor with up to a maximum 15 W TDP (if thermal margin is available).

- Intel[®] HD Graphics 520
- Integrated memory controller
- Integrated PCH

NOTE

There are specific requirements for providing power to the processor. Refer to Section 2.5.1 on page 56 for information on power supply requirements.

1.4 System Memory

The board has two 260-pin SO-DIMM sockets and supports the following memory features:

- 1.2 V DDR4 SDRAM SO-DIMMs with gold plated contacts
- Two independent memory channels with interleaved mode support
- Unbuffered, single-sided or double-sided SO-DIMMs
- 32 GB maximum total system memory (with 4 Gb memory technology). Refer to Section 2.1.1 on page 41 for information on the total amount of addressable memory.
- Minimum recommended total system memory: 2048 MB
- Non-ECC SO-DIMMs
- Serial Presence Detect
- DDR4 2133 MHz SDRAM SO-DIMMs

ΝΟΤΕ

To be fully compliant with all applicable DDR SDRAM memory specifications, the board should be populated with SO-DIMMs that support the Serial Presence Detect (SPD) data structure. This allows the BIOS to read the SPD data and program the chipset to accurately configure memory settings for optimum performance. If non-SPD memory is installed, the BIOS will attempt to correctly configure the memory settings, but performance and reliability may be impacted or the SO-DIMMs may not function under the determined frequency.

Table 4 lists the supported SO-DIMM configurations.

Raw Card Version	DIMM Capacity	DRAM Device Technology	DRAM Organization	# of DRAM Devices	# of Ranks	# of Row/Col Address Bits	# of Banks Inside DRAM	Page Size
А	4GB	4Gb	512M x 8	8	1	15/10	16	8K
А	8GB	8Gb	1024M x 8	8	1	16/10	16	8K
В	8GB	4Gb	512M x 8	16	2	15/10	16	8K
В	16GB	8Gb	1024M x 8	16	2	16/10	16	8K
С	2GB	4Gb	256M x 16	4	1	15/10	8	8k
С	4GB	8Gb	512M x 16	4	1	16/10	8	8K
E	8GB	4Gb	512M x 8	16	2	15/10	16	8K
E	16GB	8Gb	1024M x 8	16	2	16/10	16	8K

Table 4. Supported DDR4/-RS Non-ECC SO-DIMM Module Configurations

For information about	Refer to:
Tested Memory	http://www.intel.com/NUCSupport

1.4.1 Memory Configurations

The processor supports the following types of memory organization:

- **Dual channel (Interleaved) mode**. This mode offers the highest throughput for real world applications. Dual channel mode is enabled when the installed memory capacities of both SO-DIMM channels are equal. Technology and device width can vary from one channel to the other but the installed memory capacity for each channel must be equal. If different speed SO-DIMMs are used between channels, the slowest memory timing will be used.
- Single channel (Asymmetric) mode. This mode is equivalent to single channel bandwidth operation for real world applications. This mode is used when only a single SO-DIMM is installed or the memory capacities are unequal. Technology and device width can vary from one channel to the other. If different speed SO-DIMMs are used between channels, the slowest memory timing will be used.

For information about	Refer to:
Memory Configuration Examples	http://www.intel.com/NUCSupport

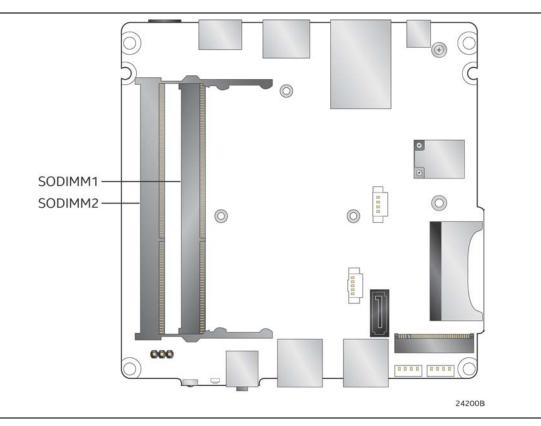


Figure 4 illustrates the memory channel and SO-DIMM configuration.

Figure 4. Memory Channel and SO-DIMM Configuration

1.5 **Processor Graphics Subsystem**

The board supports graphics through Intel HD Graphics.

1.5.1 Integrated Graphics

The board supports integrated graphics via the processor.

1.5.1.1 Intel[®] High Definition (Intel[®] HD) Graphics

The Intel HD graphics controller features the following:

- 3D Features
 - DirectX* 12.1 support
 - OpenGL* 4.4 support
 - OpenCL* 2.0 support
- Video
- Next Generation Intel[®] Clear Video Technology HD support is a collection of video playback and enhancement features that improve the end user's viewing experience
- Encode/transcode HD content
- Playback of high definition content including Blu-ray* disc
- Superior image quality with sharper, more colorful images
- DirectX* Video Acceleration (DXVA) support for accelerating video processing
- Full AVC/VC1/MPEG2/HEVC HW Encode/Decode
- Intel HD Graphics with Advanced Hardware Video Transcoding (Intel[®] Quick Sync Video)

NOTE

Intel Quick Sync Video is enabled by an appropriate software application.

1.5.1.2 Video Memory Allocation

Intel® Dynamic Video Memory Technology (DVMT) is a method for dynamically allocating system memory for use as graphics memory to balance 2D/3D graphics and system performance. If your computer is configured to use DVMT, graphics memory is allocated based on system requirements and application demands (up to the configured maximum amount). When memory is no longer needed by an application, the dynamically allocated portion of memory is returned to the operating system for other uses.

1.5.1.3 High Definition Multimedia Interface* (HDMI*)

The HDMI port supports standard, enhanced, or high definition video, plus multi-channel digital audio on a single cable. The port is compatible with all ATSC and DVB HDTV standards and supports eight full range channels at 24-bit/96 kHz audio of lossless audio formats. The maximum supported resolution is 3840 x 2160 @ 30 Hz and 2560 x 1600 @ 60 Hz, 24 bpp (WUXGA). The HDMI port is compliant with the HDMI 1.4b specification.

For information about	Refer to
HDMI technology	http://www.hdmi.org

1.5.1.4 Mini DisplayPort*

DisplayPort is a digital communication interface that utilizes differential signaling to achieve a high bandwidth bus interface designed to support connections between PCs and monitors, projectors, and TV displays. DisplayPort is suitable for display connections between consumer electronics devices such as high definition optical disc players, set top boxes, and TV displays. The maximum supported resolution is 3840 x 2160 @ 60 Hz, 30bpp. The Mini DisplayPort is compliant with the DisplayPort 1.2 specification.

DisplayPort output supports Multi-Stream Transport (MST) which allows for multiple independent video streams (daisy-chain connection with multiple monitors) over a single DisplayPort. This will require the use of displays that support DisplayPort 1.2 and allow for this feature.

For information about	Refer to
DisplayPort technology	http://www.displayport.org

1.5.1.4.1 DisplayPort 1.2 Multi-Stream Transport Daisy-Chaining

Table 5 lists the maximum resolutions available when using DisplayPort 1.2 Multi-Stream Transport.

DisplayPort Usage Models	Monitor 1	Monitor 2	Monitor 3
3 Monitors	1920 x 1200 @ 60 Hz	1920 x 1080 @ 60 Hz	1920 x 1080 @ 60 Hz
2 Monitors	2560 x 1600 @ 60 Hz	2560 x 1600 @ 60 Hz	
3 Monitors (with DisplayPort 1.2 hub)	1920 x 1080 @ 60 Hz	1920 x 1080 @ 60 Hz	1920 x 1080 @ 60 Hz

Table 5. DisplayPort Multi-Streaming Resolutions

1.5.1.5 Multiple DisplayPort and HDMI Configurations

Multiple DisplayPort and HDMI configurations feature the following:

- Two independent displays
- Single HDMI 1.4b with 4K support
- Single DisplayPort 1.2 with 4K support
- Collage Display

Single Display HDMI	Dual Display DisplayPort and HDMI	Single Display DisplayPort	
1920 x 1200 @ 60 Hz	3840 x 2160 @ 60 Hz (DisplayPort) 1920 x 1200 @ 60 Hz (HDMI)	3840 x 2160 @ 60 Hz	
4096 x 2304 @ 24Hz	3840 x 2160 @ 30 Hz (DisplayPort) 3840 x 2160 @ 30 Hz (HDMI)	Same as above	

Note: Higher resolutions may be achievable but only at lower refresh rates

For information about	Refer to
Multiple display maximum resolutions	<u>https://www-</u> <u>ssl.intel.com/content/www/us/en/processors/core/CoreTechnicalResources.html</u> (Generic link)

1.5.1.6 High-bandwidth Digital Content Protection (HDCP)

HDCP is the technology for protecting high definition content against unauthorized copy or interception between a source (computer, digital set top boxes, etc.) and the sink (panels, monitor, and TVs). The PCH supports HDCP 1.4 for content protection over wired displays (Mini DisplayPort and Mini HDMI).

1.5.1.7 Integrated Audio Provided by the HDMI and Mini DisplayPort Interfaces

The HDMI and Mini DisplayPort interfaces from the PCH support audio. The processor supports two High Definition audio streams on two digital ports simultaneously.

Table 7 shows the specific audio technologies supported by the PCH.

Audio Formats	HDMI	Mini DisplayPort
AC3 – Dolby* Digital	Yes	Yes
Dolby Digital Plus	Yes	Yes
DTS-HD*	Yes	Yes
LPCM, 192 kHz/16 bit, 8 channel	Yes	Yes
Dolby True HD, DTS-HD Master Audio* (Lossless Blu-ray Disc Audio Format)	Yes	Yes

1.6 USB

The USB port arrangement is as follows:

- USB 3.0 ports (maximum current is 900 mA for each blue port, 1.5 A for the orange charging port):
 - Two ports are implemented with external front panel connectors (one blue and one orange charging capable)
 - Two ports are implemented with external back panel connectors (blue)
- USB 2.0 ports (maximum current is 500 mA for each port of the white header (1 A total):
 - Two ports via two single-port internal 1x4 1.25 mm pitch headers (white)
 - One port is reserved for the M.2 2230 Wireless module

All the USB ports are high-speed, full-speed, and low-speed capable.

NOTE

Computer systems that have an unshielded cable attached to a USB port may not meet FCC Class B requirements, even if no device is attached to the cable. Use a shielded cable that meets the requirements for full-speed devices.

NOTE

The orange USB charging port can be set in the BIOS to "Charging Only." However this affects only USB 2.0 devices and transfers and does not affect USB 3.0 devices and transfers.

For information about	Refer to	
The location of the USB connectors on the back panel	Figure 9, page 42	
The location of the front panel USB headers	Figure 2, page 17	

1.7 SATA Interface

The board provides the following SATA interfaces:

- SATA ports:
 - One SATA 6.0 Gb/s port for 2.5" storage device
- One SATA 6.0 Gb/s port is reserved for an M.2 storage module supporting M.2 2242 and M.2 2280 (key type M) modules

The PCH provides independent SATA ports with a theoretical maximum transfer rate of 6 Gb/s. A point-to-point interface is used for host to device connections.

1.7.1 AHCI Mode

The board supports AHCI storage mode.

In order to use AHCI mode, AHCI must be enabled in the BIOS. Microsoft* Windows* 7 and Windows 8.1 include the necessary AHCI drivers without the need to install separate AHCI drivers during the operating system installation process; however, it is always good practice to update the AHCI drivers to the latest available by Intel.

1.7.2 Intel[®] Rapid Storage Technology / SATA RAID

The PCH supports Intel[®] Rapid Storage Technology, providing both AHCI and integrated RAID functionality. The RAID capability provides high-performance RAID 0 and 1 functionality on all SATA ports. Other RAID features include hot spare support, SMART alerting, and RAID 0 auto replace. Software components include an Option ROM for pre-boot configuration and boot functionality, a Microsoft Windows compatible driver, and a user interface for configuration and management of the RAID capability of the PCH.

Intel Rapid Storage Technology / SATA RAID is only supported if an M.2 SATA SSD module is used with the onboard SATA interface. RAID is not available when using M.2 PCIe SSD module and onboard SATA interface.

1.7.3 Intel[®] Smart Response Technology

Intel[®] Smart Response Technology is a disk caching solution that can provide improved computer system performance with improved power savings. It allows configuration of a computer system with the advantage of having HDDs for maximum storage capacity with system performance at or near SSD performance levels.

For more information on Intel Smart Response Technology, go to <u>http://www.intel.com/support/chipsets/sb/CS-032826.htm</u>

Dire 🖞

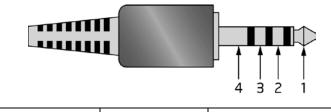
In order to use supported RAID and Intel Smart Response Technology features, you must first enable RAID in the BIOS.

1.8 Real-Time Clock Subsystem

A coin-cell battery (CR2032) powers the real-time clock and CMOS memory. When the computer is not plugged into a wall socket, the battery has an estimated life of three years. When the computer is plugged in, the standby current from the power supply extends the life of the battery. The clock is accurate to \pm 13 minutes/year at 25 °C with 3.3 VSB applied via the power supply 5 V STBY rail.

NOTE

NOTE:


If the battery and AC power fail, date and time values will be reset and the user will be notified during the POST.

When the voltage drops below a certain level, the BIOS Setup program settings stored in CMOS RAM (for example, the date and time) might not be accurate. Replace the battery with an equivalent one. Figure 1 on page 15 shows the location of the battery.

1.9 Audio Subsystem

The audio subsystem supports the following features:

- Analog line-out/Analog Headphone/Analog Microphone (front panel jack)
- Support for 44.1 kHz/48 kHz/96 kHz/192 kHz sample rates on all analog outputs
- Support for 44.1 kHz/48 kHz/96 kHz sample rates on all analog inputs
- Front Panel Audio Jack Support (see Figure 5 for 3.5 mm audio jack pin out):
 - Speakers only (Stereo)
 - Headphones only (Stereo)
 - Microphone only (mono)
 - Combo Headphone (Stereo)/Microphone (mono)

Pin Number	Pin Name	Description
1	Tip	Left Audio Out
2	Ring	Right Audio Out
3	Ring	Common/Ground
4	Sleeve	Audio In/MIC

Figure 5. 4-Pin 3.5 mm (1/8 inch) Audio Jack Pin Out

The analog circuit of the front panel audio connector is designed to power headphones or amplified speakers only. Poor audio quality occurs if passive (nonamplified) speakers are connected to this output.

1.9.1 Audio Subsystem Software

Audio software and drivers are available from Intel's World Wide Web site.

For information about	Refer to
Obtaining Audio software and drivers	http://downloadcenter.intel.com

1.10 LAN Subsystem

The LAN subsystem consists of the following:

- Intel I219V Gigabit Ethernet Controller (10/100/1000 Mb/s)
- RJ-45 LAN connector with integrated status LEDs

Additional features of the LAN subsystem include:

- CSMA/CD protocol engine
- LAN connect interface between the Processor and the LAN controller
- Power management capabilities
 - ACPI technology support
 - LAN wake capabilities
- LAN subsystem software

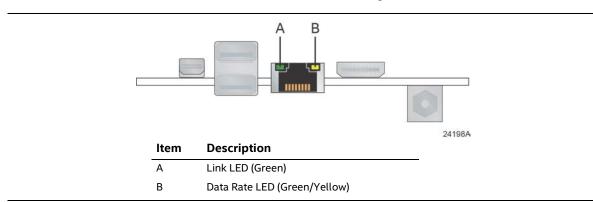
1.10.1 Intel[®] I219V Gigabit Ethernet Controller

The Intel I219V Gigabit Ethernet Controller supports the following features:

- Compliant with the 1 Gb/s Ethernet 802.3, 802.3u, 802.3z, 802.3ab specifications
- Multi-speed operation: 10/100/1000 Mb/s
- Full-duplex operation at 10/100/1000 Mb/s; Half-duplex operation at 10/100 Mb/s
- Flow control support compliant with the 802.3X specification as well as the specific operation of asymmetrical flow control defined by 802.3z
- VLAN support compliant with the 802.3q specification
- Supports Jumbo Frames (up to 9 kB)
 IEEE 1588 supports (Precision Time Protocol)
- MAC address filters: perfect match unicast filters, multicast hash filtering, broadcast filter, and promiscuous mode

1.10.2 LAN Subsystem Software

LAN software and drivers are available from Intel's World Wide Web site.


For information about

Refer to

Obtaining LAN software and drivers

http://downloadcenter.intel.com

1.10.3 RJ-45 LAN Connector with Integrated LEDs

Two LEDs are built into the RJ-45 LAN connector (shown in Figure 6).

Figure 6. LAN Connector LED Locations

Table 8 describes the LED states when the board is powered up and the LAN subsystem is operating.

Table 8	LAN	Connector	LED	States
---------	-----	-----------	-----	--------

LED	LED Color	LED State	Condition
Link	Green	Off	LAN link is not established.
		On	LAN link is established.
		Blinking	LAN activity is occurring.
Data Rate	Green/Yellow	Off	10 Mb/s data rate is selected.
		Green	100 Mb/s data rate is selected.
		Yellow	1000 Mb/s data rate is selected.

1.10.4 Wireless Network Module

The Intel Dual Band Wireless-AC 8260 module provides hi-speed wireless connectivity provided with the following capabilities:

- Compliant IEEE 802.11abgn, 802.11ac, 802.11d, 802.11e, 802.11i, 802.11h, 802.11w specifications
- Maximum bandwidth of 867 Mbps
- Dual Mode Bluetooth* 4.0
- OS certified with : Microsoft Windows 7, Microsoft Windows 8.1, Microsoft Windows 10, Linux* (most features not available on Linux)
- Wi-Fi Direct* for peer to peer device connections
- Wi-Fi Miracast Source
- Wi-Fi Direct for peer to peer device connections
- Authentication: WPA and WPA2, 802.1X (EAP-TLS, TTLS, PEAP, LEAP, EAP-FAST), EAP-SIM, EAP-AKA
- Encryption: 64-bit and 128-bit WEP, AES-CCMP, TKIP, WPA2, AES-CCMP

For information about

For information about	Refer to
Obtaining WLAN software and drivers	http://downloadcenter.intel.com
Full Specifications	http://intel.com/wireless

1.11 Hardware Management Subsystem

The hardware management features enable the board to be compatible with the Wired for Management (WfM) specification. The board has several hardware management features, including thermal and voltage monitoring.

For information about	Refer to
Wired for Management (WfM) Specification	www.intel.com/design/archives/wfm/

1.11.1 **Hardware Monitoring**

The hardware monitoring and fan control subsystem is based on an ITE Tech. IT8607E-DXS embedded controller, which supports the following:

- Processor and system ambient temperature monitoring •
- Chassis fan speed monitoring
- Voltage monitoring of +5 V, +3.3 V, Memory Vcc (V SM), +Vccp,
- SMBus interface •

1.11.2 **Fan Monitoring**

Fan monitoring can be implemented using third-party software.

1.11.3 Thermal Solution

Figure 7 shows the location of the thermal solution and processor fan header.

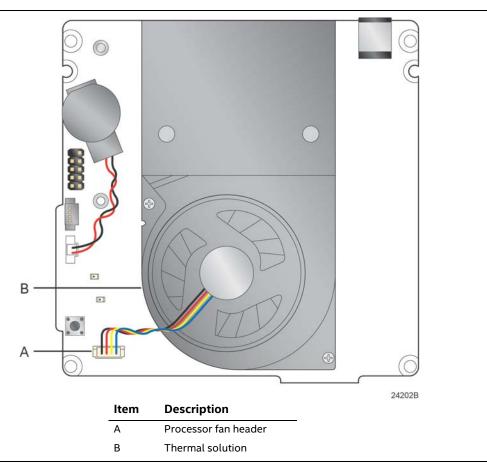


Figure 7. Thermal Solution and Fan Header

1.12 Power Management

Power management is implemented at several levels, including:

- Software support through Advanced Configuration and Power Interface (ACPI)
- Hardware support:
 - Power Input
 - Instantly Available PC technology
 - LAN wake capabilities
 - Wake from USB
 - WAKE# signal wake-up support
 - Wake from S5
 - Wake from CIR
 - +5 V Standby Power Indicator LED

1.12.1 ACPI

ACPI gives the operating system direct control over the power management and Plug and Play functions of a computer. The use of ACPI with this board requires an operating system that provides full ACPI support. ACPI features include:

- Plug and Play (including bus and device enumeration)
- Power management control of individual devices, add-in boards (some add-in boards may require an ACPI-aware driver), video displays, and hard disk drives
- Methods for achieving less than 15-watt system operation in the power-on/standby sleeping state
- A Soft-off feature that enables the operating system to power-off the computer
- Support for multiple wake-up events (see Table 11 on page 36)
- Support for a front panel power and sleep mode switch

Table 9 lists the system states based on how long the power switch is pressed, depending on how ACPI is configured with an ACPI-aware operating system.

If the system is in this state	and the power switch is pressed for	the system enters this state
Off	Less than four seconds	Power-on
(ACPI G2/G5 – Soft off)		(ACPI G0 – working state)
On	Less than four seconds	Soft-off/Standby
(ACPI G0 – working state)		(ACPI G1 – sleeping state) Note
On	More than six seconds	Fail safe power-off
(ACPI G0 – working state)		(ACPI G2/G5 – Soft off)
Sleep	Less than four seconds	Wake-up
(ACPI G1 – sleeping state)		(ACPI G0 – working state)
Sleep	More than six seconds	Power-off
(ACPI G1 – sleeping state)		(ACPI G2/G5 – Soft off)

Table 9. Effects of Pressing the Power Switch

Note: Depending on power management settings in the operating system.

1.12.1.1 System States and Power States

Under ACPI, the operating system directs all system and device power state transitions. The operating system puts devices in and out of low-power states based on user preferences and knowledge of how devices are being used by applications. Devices that are not being used can be turned off. The operating system uses information from applications and user settings to put the system as a whole into a low-power state.

Table 10 lists the power states supported by the board along with the associated system power targets. See the ACPI specification for a complete description of the various system and power states.

Global States	Sleeping States	Processor States	Device States	Targeted System Power ^(Note 1)
G0 – working state	S0 – working	CO – working	D0 – working state.	Full power > 30 W
G1 – sleeping state	S3 – Suspend to RAM. Context saved to RAM.	No power	D3 – no power except for wake-up logic.	Power < 5 W (Note 2)
G1 – sleeping state	S4 – Suspend to disk. Context saved to disk.	No power	D3 – no power except for wake-up logic.	Power < 5 W (Note 2)
G2/S5	S5 – Soft off. Context not saved. Cold boot is required.	No power	D3 – no power except for wake-up logic.	Power < 5 W (Note 2)
G3 – mechanical off AC power is disconnected from the computer.	No power to the system.	No power	D3 – no power for wake-up logic, except when provided by battery or external source.	No power to the system. Service can be performed safely.

Table 10. Power States and Targeted System Power

Notes:

- 1. Total system power is dependent on the system configuration, including add-in boards and peripherals powered by the system chassis' power supply.
- 2. Dependent on the standby power consumption of wake-up devices used in the system.

1.12.1.2 Wake-up Devices and Events

Table 11 lists the devices or specific events that can wake the computer from specific states.

Table 11.	Wake-up	Devices	and Events
-----------	---------	---------	------------

Devices/events that wake up the system	from this sleep state	Comments
Power switch	S3, S4, S5 ¹	
RTC alarm	S3, S4, S5 ¹	Monitor to remain in sleep state
LAN	S3, S4, S5 ^{1, 3}	"S5 WOL after G3" must be supported; monitor to remain in sleep state
USB	S3, S4, S5 ^{1, 2, 3}	Wake S4, S5 controlled by BIOS option (not after G3)
WAKE#	S3, S4 ¹	Via WAKE; monitor to remain in sleep state
Consumer IR	S3, S4, S5 ^{1, 3}	Will not wake when in Deep S4/S5 sleep state
Bluetooth	N/A	Wake from Bluetooth is not supported

Notes:

- 1. S4 implies operating system support only.
- 2. Will not wake from Deep S4/S5. USB S4/S5 Power is controlled by BIOS. USB S5 wake is controlled by BIOS. USB S4 wake is controlled by OS driver, not just BIOS option.
- 3. Windows 8.1 Fast startup will block wake from LAN, USB, and CIR from S5.

NOTE:	
	NOTE

Wake from S5 for Bluetooth requires additional operating system configuration. Please see Microsoft Support article at

https://msdn.microsoft.com/en-us/library/windows/hardware/dn133849(v=vs.85).aspx

The use of these wake-up events from an ACPI state requires an operating system that provides full ACPI support. In addition, software, drivers, and peripherals must fully support ACPI wake events.

1.12.2 Hardware Support

The board provides several power management hardware features, including:

- Wake from Power Button signal
- Instantly Available PC technology
- LAN wake capabilities
- Wake from USB (not after G3)
- WAKE# signal wake-up support
- Wake from S5
- Wake from CIR
- +5 V Standby Power Indicator LED

ann l	
1	Ν

ΝΟΤΕ

The use of Wake from USB from an ACPI state requires an operating system that provides full ACPI support.

1.12.2.1 Power Input

When resuming from an AC power failure, the computer returns to the power state it was in before power was interrupted (on or off). The computer's response can be set using the Last Power State feature in the BIOS Setup program's Boot menu.

1.12.2.2 Instantly Available PC Technology

Instantly Available PC technology enables the board to enter the ACPI S3 (Suspend-to-RAM) sleep-state. While in the S3 sleep-state, the computer will appear to be off (the power supply is only supplying Standby power, and the front panel LED will be amber or secondary color if dual colored, or off if single colored.) When signaled by a wake-up device or event, the system quickly returns to its last known wake state. Table 11 on page 36 lists the devices and events that can wake the computer from the S3 state.

The use of Instantly Available PC technology requires operating system support and drivers for any installed M.2 add-in card.

1.12.2.3 LAN Wake Capabilities

LAN wake capabilities enable remote wake-up of the computer through a network. The LAN subsystem monitors network traffic at the Media Independent Interface. Upon detecting a Magic Packet* frame, the LAN subsystem asserts a wake-up signal that powers up the computer.

1.12.2.4 Wake from USB

USB bus activity wakes the computer from an ACPI S3 state (not after G3).

Wake from USB requires the use of a USB peripheral that supports Wake from USB.

1.12.2.5 WAKE# Signal Wake-up Support

When the WAKE# signal on the PCI Express bus is asserted, the computer wakes from an ACPI S3 or S4 state.

1.12.2.6 Wake from S5

When the RTC Date and Time is set in the BIOS, the computer will automatically wake from an ACPI S5 state.

1.12.2.7 Wake from Consumer IR

CIR activity wakes the computer from an ACPI S3, S4, or S5 state.

1.12.2.8 +5 V Standby Power Indicator LED

The standby power indicator LED shows that power is still present even when the computer appears to be off. Figure 8 shows the location of the standby power LED.

If AC power has been switched off and the standby power indicator is still lit, disconnect the power cord before installing or removing any devices connected to the board. Failure to do so could damage the board and any attached devices.

Figure 8. Location of the Standby Power LED

Product Description

2.1 Memory Resources

2.1.1 Addressable Memory

The board utilizes 32 GB of addressable system memory. Typically the address space that is allocated for PCI Conventional bus add-in cards, PCI Express configuration space, BIOS (SPI Flash device), and chipset overhead resides above the top of DRAM (total system memory). On a system that has 32 GB of system memory installed, it is not possible to use all of the installed memory due to system address space being allocated for other system critical functions. These functions include the following:

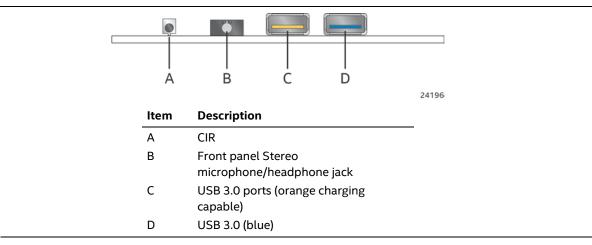
- BIOS/SPI Flash device (64 Mb)
- Local APIC (19 MB)
- Direct Media Interface (40 MB)
- PCI Express configuration space (256 MB)
- PCH base address registers PCI Express ports (up to 256 MB)
- Memory-mapped I/O that is dynamically allocated for M.2 add-in cards (256 MB)
- Integrated graphics shared memory (up to 512 MB; 64 MB by default)

The board provides the capability to reclaim the physical memory overlapped by the memory mapped I/O logical address space. The board remaps physical memory from the top of usable DRAM boundary to the 4 GB boundary to an equivalent sized logical address range located just above the 4 GB boundary. All installed system memory can be used when there is no overlap of system addresses.

2.2 Connectors and Headers

Only the following connectors and headers have overcurrent protection: back panel and front panel USB.

The other internal connectors and headers are not overcurrent protected and should connect only to devices inside the computer's chassis, such as fans and internal peripherals. Do not use these connectors or headers to power devices external to the computer's chassis. A fault in the load presented by the external devices could cause damage to the computer, the power cable, and the external devices themselves.


Furthermore, improper connection of USB header single wire connectors may eventually overload the overcurrent protection and cause damage to the board.

This section describes the board's connectors and headers. The connectors and headers can be divided into these groups:

- Front panel I/O connectors
- Back panel I/O connectors

2.2.1 Front Panel Connectors

Figure 9 shows the location of the front panel connectors for the board.

2.2.2 Back Panel Connectors

Figure 10 shows the location of the back panel connectors for the board.

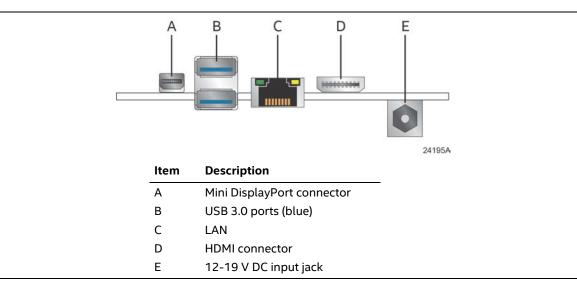


Figure 10. Back Panel Connectors

2.2.3 Headers and Connectors (Top)

Figure 11 shows the location of the headers and connectors on the top-side of the board.

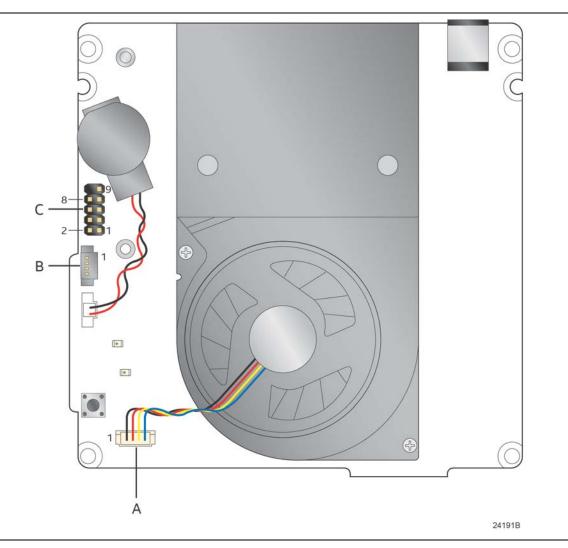


Figure 11. Headers and Connectors (Top)

Table 12 lists the headers and connectors identified in Figure 11.

	0
Item from Figure 11	Description
А	Processor fan header
В	CEC header
С	Front panel header

2.2.4 Connectors and Headers (Bottom)

Figure 12 shows the locations of the connectors and headers on the bottom-side of the board.

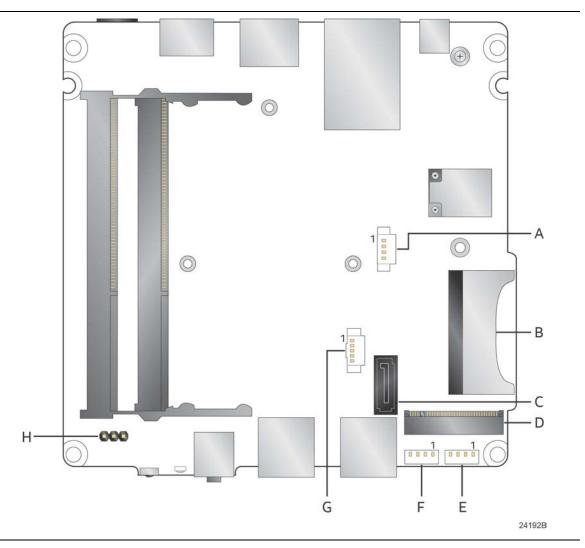


Figure 12. Connectors and Headers (Bottom)

Table 13 lists the connectors and headers identified in Figure 12.

Item from Figure 12	Description
А	Auxiliary power connector
В	SDXC slot
С	SATA 6.0 Gb/s connector
D	M.2 connector (key type M) for 2242 and 2280 modules
E	Front panel single-port USB 2.0 header (1.25 mm pitch)
F	Front panel single-port USB 2.0 header (1.25 mm pitch)
G	SATA power connector (1.25 mm pitch)
Н	BIOS security jumper

 Table 13. Connectors and Headers Shown in Figure 12

2.2.4.1 Signal Tables for the Connectors and Headers

Table 14. SATA Power Connector (1.25 mm pitch)

Pin	Signal Name
1	+5 V
2	+5 V
3	+3.3 V
4	GND
5	GND

NOTE

Connector is Molex* part number 53398-0571, 1.25 mm pitch PicoBlade* header, surface mount, vertical, lead-free, 5 circuits.

Pin	Signal Name	Pin	Signal Name
1	+5 V DC	2	D-
3	D+	4	Ground

NOTE

Connector is Molex part number 53398-0471, 1.25 mm pitch PicoBlade header, surface mount, vertical, lead-free, 4 circuits.

Pin	Signal Name	Pin	Signal Name
74	3.3V	75	GND
72	3.3V	73	GND
70	3.3V	71	GND
68	SUSCLK(32kHz) (O)(0/3.3V)	69	PEDET (NC-PCIe/GND-SATA)
66	Connector Key	67	N/C
64	Connector Key	65	Connector Key
62	Connector Key	63	Connector Key
60	Connector Key	61	Connector Key
58	N/C	59	Connector Key
56	N/C	57	GND

Table 16. M.2 2280 Module (key type M) Connector

continued

Pin	Signal Name	Pin	Signal Name
54	PEWAKE# (I/O)(0/3.3V) or N/C	55	REFCLKP
52	CLKREQ# (I/O)(0/3.3V) or N/C	53	REFCLKN
50	PERST# (O)(0/3.3V) or N/C	51	GND
48	N/C	49	PETp0/SATA-A+
46	N/C	47	PETn0/SATA-A-
44	N/C	45	GND
42	N/C	43	PERp0/SATA-B-
40	N/C	41	PERn0/SATA-B+
38	DEVSLP (O)	39	GND
36	N/C	37	PETp1
34	N/C	35	PETn1
32	N/C	33	GND
30	N/C	31	PERp1
28	N/C	29	PERn1
26	N/C	27	GND
24	N/C	25	PETp2
22	N/C	23	PETn2
20	N/C	21	GND
18	3.3V	19	PERp2
16	3.3V	17	PERn2
14	3.3V	15	GND
12	3.3V	13	РЕТр3
10	DAS/DSS# (I/O)/LED1# (I)(0/3.3V)	11	PETn3
8	N/C	9	GND
6	N/C	7	PERp3
4	3.3V	5	PERn3
2	3.3V	3	GND
		1	GND

Table 16. M.2 2280 Module (key type M) Connector (continued)

Pin	Signal Name
1	5VSTBY
2	GND
3	PWR_SWITCH#
4	HDMI_CEC

NOTE

Connector is Molex part number 53398-0471, 1.25 mm pitch PicoBlade header, surface mount, vertical, lead-free, 4 circuits.

2.2.4.2 Add-in Card Connectors

The board supports M.2 2242 and 2280 (key type M) modules.

- Supports M.2 SSD SATA drives
- Maximum bandwidth is approximately 540 MB/s
- Supports M.2 SSD PCIe drives (PCIe x1, x2, and x4)
 - Using PCIe x4 M.2 SSD maximum bandwidth is approximately 1600 MB/s

2.2.4.3 Front Panel Header (2.0 mm Pitch)

This section describes the functions of the front panel header. Table 18 lists the signal names of the front panel header. Figure 13 is a connection diagram for the front panel header.

Pin	Signal Name	Description	Pin	Signal Name	Description
1	HDD_POWER_LED	Pull-up resistor (750 Ω) to +5V	2	POWER_LED_MAIN	[Out] Front panel LED (main color)
3	HDD_LED#	[Out] Hard disk activity LED	4	POWER_LED_ALT	[Out] Front panel LED (alt color)
5	GROUND	Ground	6	POWER_SWITCH#	[In] Power switch
7	RESET_SWITCH#	[In] Reset switch	8	GROUND	Ground
9	+5V_DC	Power	10	Кеу	No pin

Table 18. Front Panel Header (2.0 mm Pitch)

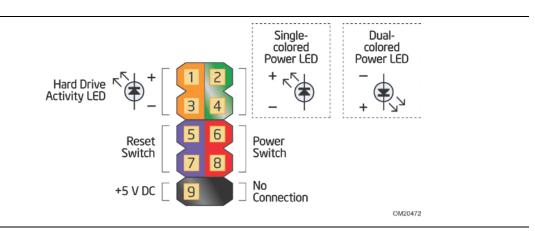


Figure 13. Connection Diagram for Front Panel Header (2.0 mm Pitch)

2.2.4.3.1 Hard Drive Activity LED Header

Pins 1 and 3 can be connected to an LED to provide a visual indicator that data is being read from or written to a hard drive. Proper LED function requires a SATA hard drive or optical drive connected to an onboard SATA connector.

2.2.4.3.2 Reset Switch Header

Pins 5 and 7 can be connected to a momentary single pole, single throw (SPST) type switch that is normally open. When the switch is closed, the board resets and runs the POST.

2.2.4.3.3 Power/Sleep LED Header

Pins 2 and 4 can be connected to a one- or two-color LED. Table 19 and Table 20 show the possible LED states.

LED State	Description	
Off	Power off	
Blinking	Standby	
Steady	Normal operation	

Table 19. States for a One-Color Power LED

Table 20. States for a Dual-Color Power LED

LED State	Description
Off	Power off
Secondary color blinking (amber)	Standby
Primary color steady (white)	Normal operation

The LED behavior shown in Table 19 is default – other patterns may be set via BIOS setup.

2.2.4.3.4 Power Switch Header

Pins 6 and 8 can be connected to a front panel momentary-contact power switch. The switch must pull the SW_ON# pin to ground for at least 50 ms to signal the power supply to switch on or off. (The time requirement is due to internal debounce circuitry on the board.) At least two seconds must pass before the power supply will recognize another on/off signal.

2.2.4.4 SDXC Card Reader

The board has a standard Secure Digital (SD) card reader that supports the Secure Digital eXtended Capacity (SDXC) format, 3.01 specification with UHS-I support. SD Card sizes supported from 8GB to 128GB.

Pin	Signal Name	Descriptive Name	
1	CD	Card Detection	
2	DATA2	Serial Data 2	
3	DATA3	Serial Data 3	
4	CMD	Command	
5	VSS1	Ground	
6	VDD	Power (3.3 V)	
7	CLK	Serial Clock	
8	VSS2	Ground	
9	DATA0	Serial Data 0	
10	DATA1	Serial Data 1	
11	WP	Write Protect	

Table 21. SDXC Card Reader Connector

ΝΟΤΕ

The SD card reader is not supported in Microsoft* Windows* 7

2.2.4.5 **Power Supply Connector**

The board has the following power supply connector:

External Power Supply - the board can be powered through a 12-19 V DC connector on the • back panel. The back panel DC connector is compatible with a 5.5 mm/OD (outer diameter) and 2.5 mm/ID (inner diameter) plug, where the inner contact is +12-19 (±10%) V DC and the shell is GND. The maximum current rating is 10 A.

External power voltage, 12-19 V DC, is dependent on the type of power brick used.

Pin Signal Name **Descriptive Name** +5VSB 1 5V Standby supply WC CTL USB Charging Enable/Disable 2 3 GND Ground 4 +VIN 12V – 19V DC input (fused at 1.5 A)

Table 22. Auxiliary Power Connector

NOTE

The Auxiliary Power Connector is limited voltage source (output) for 5V Standby and the voltage supplied to the board (typically 19V DC) for use by expansion peripherals. The Auxiliary Power Connector is limited to 1.5A max (fused).

NOTE

Connector is Molex part number 53398-0471, 1.25 mm pitch PicoBlade header, surface mount, vertical, lead-free, 4 circuits.

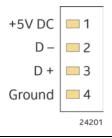
For information about	Refer to
Power supply considerations	Section 2.5.1, page 56

2.2.4.5.1 **Power Sensing Circuit**

The board has a power sensing circuit that:

- manages CPU power usage to maintain system power consumption below 65 W.
- is designed for use with 65 W AC-DC adapters. ٠

NOTE


It is recommended that you disable this feature (via BIOS option) when using an AC-DC adapter greater than 65 W.

2.2.4.6 Internal USB 2.0 Single-Port Header (1.25 mm Pitch)

Figure 14 is a connection diagram for the internal USB header.

🗒 ΝΟΤΕ

- The +5 V DC power on the USB header is fused.
- Use only an internal USB connector that conforms to the USB 2.0 specification for high-speed USB devices.

2.2.4.7 Consumer Infrared (CIR) Sensor

The Consumer Infrared (CIR) sensor on the front panel provides features that are designed to comply with Microsoft Consumer Infrared usage models (RC-6).

The CIR feature is made up of the receiving sensor. The receiving sensor consists of a filtered translated infrared input compliant with Microsoft CIR specifications.

Customers are required to provide their own media center compatible remote or smart phone application for use with the Intel NUC. Figure 15 shows the location of the CIR sensor.

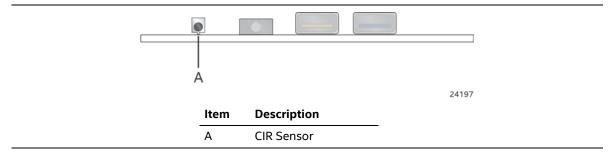


Figure 15. Location of the CIR Sensor

2.2.4.8 Consumer Electronics Control (CEC) Header

The Consumer Electronics Control (CEC) is a 500 Mb/s bi-directional serial bus designed to be used for controlling multiple HDMI devices with a single remote control. Table 17 shows the pinout for this header.

For information about	Refer to
HDMI CEC technology	http://www.hdmi.org/pdf/whitepaper/DesigningCECintoYourNextH DMIProduct.pdf

2.3 BIOS Security Jumper

Do not move a jumper with the power on. Always turn off the power and unplug the power cord from the computer before changing a jumper setting. Otherwise, the board could be damaged.

Figure 16 shows the location of the BIOS Security Jumper. The 3-pin jumper determines the BIOS Security program's mode.

Table 20 describes the jumper settings for the three modes: normal, lockdown, and configuration.

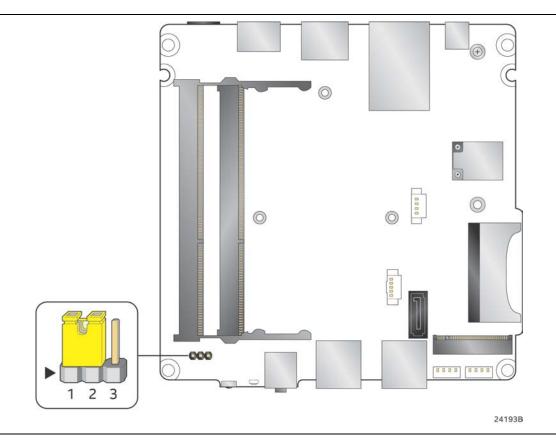


Figure 16. Location of the BIOS Security Jumper

Table 20 lists the settings for the jumper.

Function/Mode	Jumper Setting	Configuration	
Normal	1-2	The BIOS uses current configuration information and passwords for booting.	
Lockdown	2-3	The BIOS uses current configuration information and passwords for booting, except:	
		 All POST Hotkeys are suppressed (prompts are not displayed and keys are not accepted. For example, F2 for Setup, F10 for the Boot Menu). 	
		 Power Button Menu is not available (see Section 3.7.4 Power Button Menu). 	
		BIOS updates are not available except for automatic Recovery due to flash corruption.	
Configuration	None	BIOS Recovery Update process if a matching *.bio file is found. Recovery Update can be cancelled by pressing the Esc key.	
		If the Recovery Update was cancelled or a matching *.bio file was not found, a Config Menu will be displayed. The Config Menu consists of the following (selected Power Button Menu options):	
		[1] Suppress this menu until the BIOS Security Jumper is replaced.	
		[2] Clear BIOS User and Supervisor Passwords.	
		See Section 3.7.4 Power Button Menu.	

Table 20. BIOS Security Jumper Settings

2.4 Mechanical Considerations

2.4.1 Form Factor

The board is designed to fit into a custom chassis. Figure 17 illustrates the mechanical form factor for the board. Dimensions are given in inches [millimeters].

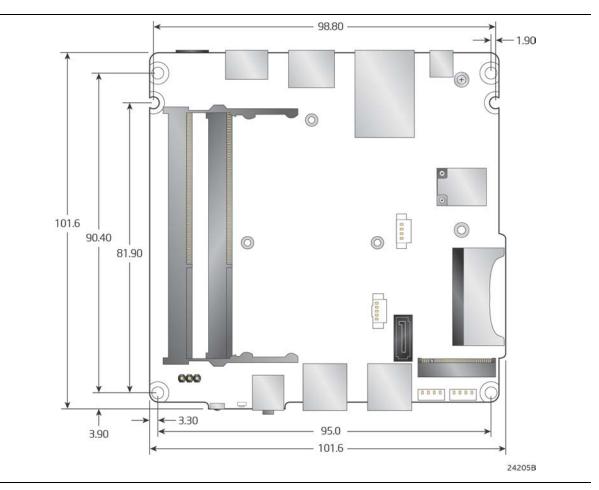
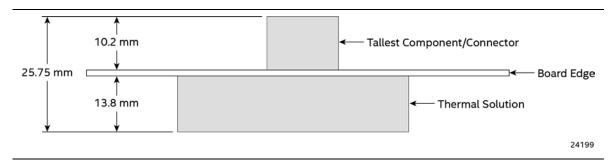



Figure 17. Board Dimensions

Figure 18 shows the height dimensions of the board.

2.5 Electrical Considerations

2.5.1 **Power Supply Considerations**

System power requirements will depend on actual system configurations chosen by the integrator, as well as end user expansion preferences. It is the system integrator's responsibility to ensure an appropriate power budget for the system configuration is properly assessed based on the system-level components chosen.

2.5.2 Fan Header Current Capability

Table 23 lists the current capability of the fan header.

Table 23.	Fan Header	Current	Capability
-----------	------------	---------	------------

Fan Header	Maximum Available Current
Processor fan	.25 A

Thermal Considerations 2.6

A chassis with a maximum internal ambient temperature of 50 °C at the processor fan inlet is recommended. If the internal ambient temperature exceeds 50 °C, further thermal testing is required to ensure components do not exceed their maximum case temperature.

Failure to ensure appropriate airflow may result in reduced performance of both the processor and/or voltage regulator or, in some instances, damage to the board.

All responsibility for determining the adequacy of any thermal or system design remains solely with the system integrator. Intel makes no warranties or representations that merely following the instructions presented in this document will result in a system with adequate thermal performance.

Ensure that the ambient temperature does not exceed the board's maximum operating temperature. Failure to do so could cause components to exceed their maximum case temperature and malfunction. For information about the maximum operating temperature, see the environmental specifications in Section 2.8.

Ensure that proper airflow is maintained in the processor voltage regulator circuit. Failure to do so may result in shorter than expected product lifetime.

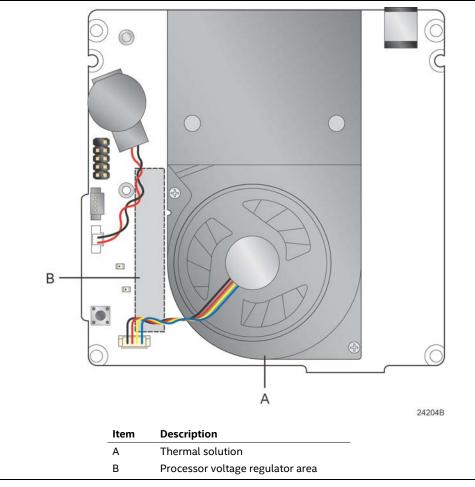


Figure 19 shows the locations of the localized high temperature zones.

Figure 19. Localized High Temperature Zones

A thermal pad has been installed for the bottom of the chassis to improve the thermal performance when using M.2 devices that operate at higher temperatures. If the thermal pad ever needs to be replaced, Figure 20 shows the installation area of the thermal pad for the Intel NUC Kit NUC6i3SYK/NUC6i3SYK.

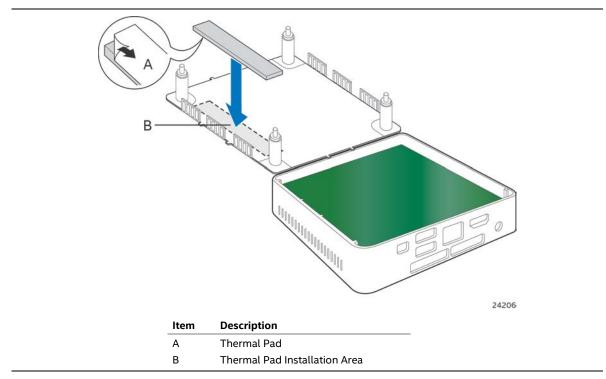


Figure 20. Installation Area of Thermal Pad for Intel NUC Kit NUC6i5SYK/NUC6i3SYK

Figure 21 shows the installation area of the thermal pad for the Intel NUC Kit NUC6i5SYH/NUC6i3SYH.

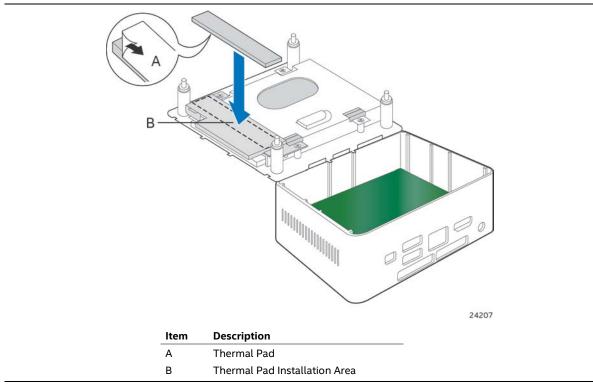


Figure 21. Installation area of Thermal Pad for Intel NUC Kit NUC6i5SYH/NUC6i3SYH

Table 24 provides maximum case temperatures for the components that are sensitive to thermal changes. The operating temperature, current load, or operating frequency could affect case temperatures. Maximum case temperatures are important when considering proper airflow to cool the board.

Component	Maximum Case Temperature
Processor	For processor case temperature, see processor datasheets and processor specification updates

Table 24. Thermal Considerations for Components

To ensure functionality and reliability, the component is specified for proper operation when Case Temperature is maintained at or below the maximum temperature listed in Table 25. This is a requirement for sustained power dissipation equal to Thermal Design Power (TDP is specified as the maximum sustainable power to be dissipated by the components). When the component is dissipating less than TDP, the case temperature should be below the Maximum Case Temperature. The surface temperature at the geometric center of the component corresponds to Case Temperature.

It is important to note that the temperature measurement in the system BIOS is a value reported by embedded thermal sensors in the components and does not directly correspond to the Maximum Case Temperature. The upper operating limit when monitoring this thermal sensor is Tcontrol.

Component	Tcontrol
Processor	For processor case temperature, see processor datasheets and processor specification updates

Table 25.	Tcontrol	Values for	Components
-----------	----------	------------	------------

For information about	Refer to
Processor datasheets and specification updates	Section 1.2, page 20

2.7 Reliability

The Mean Time Between Failures (MTBF) prediction is calculated using component and subassembly random failure rates. The calculation is based on the Telcordia SR-332 Issue 2, Method I, Case 3, 55 °C ambient. The MTBF prediction is used to estimate repair rates and spare parts requirements. The MTBF for Intel NUC6i5SYB board is 61,848 hours. The MTBF for Intel NUC6i3SYB board is 61,760 hours.

2.8 Environmental

Table 26 lists the environmental specifications for the board.

Parameter	Specification			
Temperature				
Non-Operating	-40 °C to +60 °C			
Operating	0 °C to +40 °C	0 °C to +40 °C		
	temperature from the junction	The operating temperature of the board may be determined by measuring the air temperature from the junction of the heatsink fins and fan, next to the attachment screw, in a closed chassis, while the system is in operation.		
Shock				
Unpackaged	50 g trapezoidal waveform			
	Velocity change of 170 inche	Velocity change of 170 inches/s ²		
Packaged	Half sine 2 millisecond			
	Product Weight (pounds)	Free Fall (inches)	Velocity Change (inches/s ²)	
	<20	36	167	
	21-40	30	152	
	41-80	24	136	
	81-100	18	118	
/ibration				
Unpackaged	5 Hz to 20 Hz: 0.01 g ² Hz sloping up to 0.02 g ² Hz			
	20 Hz to 500 Hz: 0.02 g ² Hz	20 Hz to 500 Hz: 0.02 g ² Hz (flat)		
Packaged	5 Hz to 40 Hz: 0.015 g² Hz (flat)			
	40 Hz to 500 Hz: 0.015 g^2 Hz sloping down to 0.00015 g^2 Hz			

Table 26. Environmental Specifications

Note: Before attempting to operate this board, the overall temperature of the board must be above the minimum operating temperature specified. It is recommended that the board temperature be at least room temperature before attempting to power on the board. The operating and non-operating environment must avoid condensing humidity.

3.1 Introduction

The board uses Intel Visual BIOS that is stored in the Serial Peripheral Interface Flash Memory (SPI Flash) and can be updated using a disk-based program. The SPI Flash contains the Visual BIOS Setup program, POST, the PCI auto-configuration utility, LAN EEPROM information, and Plug and Play support.

The BIOS displays a message during POST identifying the type of BIOS and a revision code. The initial production BIOSs are identified as SYSKLi35.86A.

The Visual BIOS Setup program can be used to view and change the BIOS settings for the computer. The BIOS Setup program is accessed by pressing the <F2> key after the Power-On Self-Test (POST) memory test begins and before the operating system boot begins.

8	
NOTE:	
1	NOTE
and the second	NOTE

The maintenance menu is displayed only when the board is in configure mode. Section 2.3 on page 53 shows how to put the board in configure mode.

3.2 BIOS Flash Memory Organization

The Serial Peripheral Interface Flash Memory (SPI Flash) includes a 64 Mb flash memory device.

3.3 System Management BIOS (SMBIOS)

SMBIOS is a Desktop Management Interface (DMI) compliant method for managing computers in a managed network.

The main component of SMBIOS is the Management Information Format (MIF) database, which contains information about the computing system and its components. Using SMBIOS, a system administrator can obtain the system types, capabilities, operational status, and installation dates for system components. The MIF database defines the data and provides the method for accessing this information. The BIOS enables applications such as third-party management software to use SMBIOS. The BIOS stores and reports the following SMBIOS information:

- BIOS data, such as the BIOS revision level
- Fixed-system data, such as peripherals, serial numbers, and asset tags
- Resource data, such as memory size, cache size, and processor speed
- Dynamic data, such as event detection and error logging

Non-Plug and Play operating systems require an additional interface for obtaining the SMBIOS information. The BIOS supports an SMBIOS table interface for such operating systems. Using this support, an SMBIOS service-level application running on a non-Plug and Play operating system can obtain the SMBIOS information. Additional board information can be found in the BIOS under the Additional Information header under the Main BIOS page.

3.4 Legacy USB Support

Legacy USB support enables USB devices to be used even when the operating system's USB drivers are not yet available. Legacy USB support is used to access the BIOS Setup program, and to install an operating system that supports USB. By default, Legacy USB support is set to Enabled.

Legacy USB support operates as follows:

- 1. When you apply power to the computer, legacy support is disabled.
- 2. POST begins.
- 3. Legacy USB support is enabled by the BIOS allowing you to use a USB keyboard to enter and configure the BIOS Setup program and the maintenance menu.
- 4. POST completes.
- 5. The operating system loads. While the operating system is loading, USB keyboards and mice are recognized and may be used to configure the operating system. (Keyboards and mice are not recognized during this period if Legacy USB support was set to Disabled in the BIOS Setup program.)
- 6. After the operating system loads the USB drivers, all legacy and non-legacy USB devices are recognized by the operating system, and Legacy USB support from the BIOS is no longer used.

7. Additional USB legacy feature options can be access by using Intel[®] Integrator Toolkit.

To install an operating system that supports USB, verify that Legacy USB support in the BIOS Setup program is set to Enabled and follow the operating system's installation instructions.

3.5 BIOS Updates

The BIOS can be updated using one of the following methods:

- Intel Express BIOS Update Utility, which enables automated updating while in the Windows environment. Using this utility, the BIOS can be updated from a file on a hard disk, a USB drive (a flash drive or a USB hard drive), or a CD-ROM, or from the file location on the Web.
- Intel Flash Memory Update Utility, which requires booting from DOS. Using this utility, the BIOS can be updated from a file on a hard disk, a USB drive (a flash drive or a USB hard drive), or a CD-ROM.
- Intel® F7 switch during POST allows a user to select where the BIOS .bio file is located and perform the update from that location/device. Similar to performing a BIOS Recovery without removing the BIOS configuration jumper.
- Intel[®] Visual BIOS has an option to update the BIOS from a valid .bio file located on a hard disk or USB drive. Enter Intel Visual BIOS by pressing <F2> during POST.
- Using Front Panel menu option

Both utilities verify that the updated BIOS matches the target system to prevent accidentally installing an incompatible BIOS.

Review the instructions distributed with the upgrade utility before attempting a BIOS update.

For information about	Refer to
BIOS update utilities	http://support.intel.com/support/motherboards/desktop/sb/CS-
	<u>034499.htm</u>

3.5.1 Language Support

The BIOS Setup program and help messages are supported in US English. Check the Intel web site for support.

3.5.2 Custom Splash Screen

During POST, an Intel[®] splash screen is displayed by default. This splash screen can be augmented with a custom splash screen. The Intel Integrator's Toolkit that is available from Intel can be used to create a custom splash screen.

If you add a custom splash screen, it will share space with the Intel branded logo.

For information about	Refer to	
Intel Integrator Toolkit	http://developer.intel.com/design/motherbd/software/itk/	
Additional Intel [®] software tools	http://developer.intel.com/design/motherbd/software.htm	

3.6 BIOS Recovery

It is unlikely that anything will interrupt a BIOS update; however, if an interruption occurs, the BIOS could be damaged. Table 27 lists the drives and media types that can and cannot be used for BIOS recovery. The BIOS recovery media does not need to be made bootable.

Table 27.	Acceptable Drives/Media	Types for BIOS Recovery
-----------	-------------------------	-------------------------

Media Type ^(Note)	Can be used for BIOS recovery?
Hard disk drive (connected to SATA or USB)	Yes
CD/DVD drive (connected to SATA or USB)	Yes
USB flash drive	Yes
USB diskette drive (with a 1.4 MB diskette)	No (BIOS update file is bigger than 1.4 MB size limit)

📩 ΝΟΤΕ

Supported file systems for BIOS recovery:

- NTFS (sparse, compressed, or encrypted files are not supported)
- FAT32
- FAT16
- FAT12
- ISO 9660

For information about	Refer to
BIOS recovery	http://www.intel.com/support/motherboards/desktop/sb/cs-034524.htm

3.7 Boot Options

In the BIOS Setup program, the user can choose to boot from a hard drive, optical drive, removable drive, or the network. The default setting is for the optical drive to be the first boot device, the hard drive second, removable drive third, and the network fourth.

3.7.1 Network Boot

The network can be selected as a boot device. This selection allows booting from the onboard LAN or a network add-in card with a remote boot ROM installed.

Pressing the <F12> key during POST automatically forces booting from the LAN. To use this key during POST, the User Access Level in the BIOS Setup program's Security menu must be set to Full.

3.7.2 Booting Without Attached Devices

For use in embedded applications, the BIOS has been designed so that after passing the POST, the operating system loader is invoked even if the following devices are not present:

- Video adapter
- Keyboard
- Mouse

3.7.3 Changing the Default Boot Device During POST

Pressing the <F10> key during POST causes a boot device menu to be displayed. This menu displays the list of available boot devices. Table 28 lists the boot device menu options.

Boot Device Menu Function Keys	Description	
<>> or <\> Selects a default boot device		
<enter></enter>	Exits the menu, and boots from the selected device	
<esc></esc>	Exits the menu and boots according to the boot priority defined through BIOS setup	

3.7.4 Power Button Menu

As an alternative to Back-to-BIOS Mode or normal POST Hotkeys, the user can use the power button to access a menu. The Power Button Menu is accessible via the following sequence:

- 1. System is in S4/S5 (not G3)
- 2. User pushes the power button and holds it down for 3 seconds
- 3. The system will emit three short beeps from the front panel (FP) audio port, then stop to signal the user to release the power button. The FP power button LED will also change from Blue to Amber when the user can release the power button.
- 4. User releases the power button before the 4-second shutdown override

If this boot path is taken, the BIOS will use default settings, ignoring settings in VPD where possible.

At the point where Setup Entry/Boot would be in the normal boot path, the BIOS will display the following prompt and wait for a keystroke:

- [ESC] Normal Boot
- [F2] Intel Visual BIOS
- [F3] Disable Fast Boot
- [F4] BIOS Recovery
- [F7] Update BIOS
- [F10] Enter Boot Menu
- [F12] Network Boot

[F2] Enter Setup is displayed instead if Visual BIOS is not supported.

[F3] Disable Fast Boot is only displayed if at least one Fast Boot optimization is enabled.

[F9] Remote Assistance is only displayed if Remote Assistance is supported.

If an unrecognized key is hit, then the BIOS will beep and wait for another keystroke. If one of the listed hotkeys is hit, the BIOS will follow the indicated boot path. Password requirements must still be honored.

If Disable Fast Boot is selected, the BIOS will disable all Fast Boot optimizations and reset the system.

3.8 Hard Disk Drive Password Security Feature

The Hard Disk Drive Password Security feature blocks read and write accesses to the hard disk drive until the correct password is given. Hard Disk Drive Passwords are set in BIOS SETUP and are prompted for during BIOS POST. For convenient support of S3 resume, the system BIOS will automatically unlock drives on resume from S3. Valid password characters are A-Z, a-z, and 0-9. Passwords may be up to 19 characters in length.

The User hard disk drive password, when installed, will be required upon each power-cycle until the Master Key or User hard disk drive password is submitted.

The Master Key hard disk drive password, when installed, will not lock the drive. The Master Key hard disk drive password exists as an unlock override in the event that the User hard disk drive password is forgotten. Only the installation of the User hard disk drive password will cause a hard disk to be locked upon a system power-cycle.

Table 29 shows the effects of setting the Hard Disk Drive Passwords.

Password Set	Password During Boot	
Neither	None	
Master only	None	
User only	User only	
Master and User Set	Master or User	

Table 29. Master Key and User Hard Drive Password Functions

During every POST, if a User hard disk drive password is set, POST execution will pause with the following prompt to force the user to enter the Master Key or User hard disk drive password:

Enter Hard Disk Drive Password:

Upon successful entry of the Master Key or User hard disk drive password, the system will continue with normal POST.

If the hard disk drive password is not correctly entered, the system will go back to the above prompt. The user will have three attempts to correctly enter the hard disk drive password. After the third unsuccessful hard disk drive password attempt, the system will halt with the message:

Hard Disk Drive Password Entry Error

A manual power cycle will be required to resume system operation.

ΝΟΤΕ

As implemented on Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB, Hard Disk Drive Password Security is only supported on either SATA port 0 (M.2) or SATA Port 1 (onboard SATA connector). The passwords are stored on the hard disk drive so if the drive is relocated to another computer that does not support Hard Disk Drive Password Security feature, the drive will not be accessible.

3.9 BIOS Security Features

The BIOS includes security features that restrict access to the BIOS Setup program and who can boot the computer. A supervisor password and a user password can be set for the BIOS Setup program and for booting the computer, with the following restrictions:

- The supervisor password gives unrestricted access to view and change all the Setup options in the BIOS Setup program. This is the supervisor mode.
- The user password gives restricted access to view and change Setup options in the BIOS Setup program. This is the user mode.
- If only the supervisor password is set, pressing the <Enter> key at the password prompt of the BIOS Setup program allows the user restricted access to Setup.
- If both the supervisor and user passwords are set, users can enter either the supervisor password or the user password to access Setup. Users have access to Setup respective to which password is entered.
- Setting the user password restricts who can boot the computer. The password prompt will be displayed before the computer is booted. If only the supervisor password is set, the computer boots without asking for a password. If both passwords are set, the user can enter either password to boot the computer.
- For enhanced security, use different passwords for the supervisor and user passwords.
- Valid password characters are A-Z, a-z, and 0-9. Passwords may be up to 20 characters in length.
- To clear a set password, enter a blank password after entering the existing password.

Table 30 shows the effects of setting the supervisor password and user password. This table is for reference only and is not displayed on the screen.

Password Set	Supervisor Mode	User Mode	Setup Options	Password to Enter Setup	Password During Boot
Neither	Can change all options ^(Note)	Can change all options ^(Note)	None	None	None
Supervisor only	Can change all options	Can change a limited number of options	Supervisor Password	Supervisor	None
User only	N/A	Can change all options	Enter Password Clear User Password	User	User
Supervisor and user set	Can change all options	Can change a limited number of options	Supervisor Password Enter Password	Supervisor or user	Supervisor or user

Table 30. Supervisor and User Password Functions

Note: If no password is set, any user can change all Setup options.

4.1 Front-panel Power LED Blink Codes

Whenever a recoverable error occurs during POST, the BIOS causes the board's front panel power LED to blink an error message describing the problem (see Table 31).

Туре	Pattern	Note
Power-on	Solid on primary color. Indicates S0 state.	Default to On; can be disabled via BIOS Setup
S3 Standby	Blink alternate color .25 seconds on, .25 seconds off, indefinitely. Indicates S3 state.	Default behavior; can be changed via BIOS Setup
Intel Ready Mode	Blink primary color, 1 second on, 1 second off, indefinitely.	
BIOS update in progress	Off when the update begins, then primary color on for 0.5 seconds, then off for 0.5 seconds. The pattern repeats until the BIOS update is complete.	
Memory error	On-off (1.0 second each) three times, then 2.5-second pause (off), entire pattern repeats (blinks and pause) until the system is powered off.	
Thermal trip warning	Blink primary color .25 seconds on, .25 seconds off, .25 seconds on, .25 seconds off. This will result in a total of 16 blinks (blink for 8 seconds).	

Table 31. Front-panel Power LED Blink Codes

4.2 BIOS Error Messages

Table 30 lists the error messages and provides a brief description of each.

Error Message	Explanation
CMOS Battery Low	The battery may be losing power. Replace the battery soon.
CMOS Checksum Bad	The CMOS checksum is incorrect. CMOS memory may have been corrupted. Run Setup to reset values.
Memory Size Decreased	Memory size has decreased since the last boot. If no memory was removed, then memory may be bad.
No Boot Device Available	System did not find a device to boot.

Intel NUC Board NUC6i5SYB and Intel NUC Board NUC6i3SYB Technical Product Specification